A weighted gram-schmidt method for convex quadratic programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A weighted gram-schmidt method for convex quadratic programming

Range-space methods for convex quadratic programming improve in efficiency as the number of constraints active at the solution decreases. In this paper we describe a range-space method based upon updating a weighted Gram-Schmidt factorization of the constraints in the active set. The updating methods described are applicable to both primal and dual quadratic programming algorithms that use an a...

متن کامل

A polynomial method of weighted centers for convex quadratic programming

A generalization of the weighted central path{following method for convex quadratic programming is presented. This is done by uniting and modifying the main ideas of the weighted central path{following method for linear programming and the interior point methods for convex quadratic programming. By means of the linear approximation of the weighted logarithmic barrier function and weighted inscr...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

A Semidefinite Programming Method for Integer Convex Quadratic Minimization

We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Z. We present a semidefinite programming (SDP) method for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions. The effectiveness of the m...

متن کامل

A Primal-Dual Active-Set Method for Convex Quadratic Programming

The paper deals with a method for solving general convex quadratic programming problems with equality and inequality constraints. The interest in such problems comes from at least two facts. First, quadratic models are widely used in real-life applications. Second, in many algorithms for nonlinear programming, a search direction is determined at each iteration as a solution of a quadratic probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 1984

ISSN: 0025-5610,1436-4646

DOI: 10.1007/bf02591884